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Abstract. We present a two-part approach for verifying out-of-order execution. 
First, the complexity of out-of-order issue and scheduling is handled by creating 
an in-order abstraction of the out-of-order execution core. Second, incremental 
flushing addresses the complexity difficulties encountered by automated abstrac- 
tion functions on very deep pipelines. We illustrate the techniques on a model of 
a simple out-of-order processor core. 

1   Introduction 
Formal verification of microprocessor designs using theorem proving aims at proving 
that a processor model behaves as defined by an instruction-set architecture (ISA). The 
ISA captures the programmer-level view of the machine. This approach requires an ab- 
straction function that relates the state of the processor model with the corresponding 
state of the ISA. Finding this abstraction function manually for pipelined designs is 
tedious and time consuming. In response, Burch and Dill devised an approach that au- 
tomatically generates the abstraction function by flushing the implementation state [3]. 
The technique has been extended to dual-issue and super-scalar architectures [7,2,15]. 

While formal verification techniques exist for pipelined and super-scalar architec- 
tures, experience verifying out-of-order architectures is minimal. The distinct features 
of out-of-order architectures challenge existing verification approaches. First, the ex- 
tended instruction parallelism in out-of-order architectures results in many complex 
interactions between executing instructions. This greater complexity makes it very dif- 
ficult to devise an abstraction function. Second, large (> 40 element) buffers are used 
to record and maintain the program order of instructions. Burch and Dill's automated 
pipeline flushing approach does not work for out-of-order architectures in practice be- 
cause the number of cycles required to empty the buffer completely is so large. The 
logical formulas are too complex to manipulate in proofs and often too complex even 
to construct. 

We present a two-part approach that deals with the out-of-order scheduling logic and 
the in-order buffering mechanisms separately. First, the implementation is modified to 
derive an in-order abstraction. These modifications bypass the out-of-order logic and 
result in instructions executing in order. By exploiting domain-specific knowledge, we 
are able to establish a functional equivalence relation between the out-of-order imple- 
mentation and the abstraction. The second step of our technique shows that the in-order 

DISTRIBUTION STATEMENT A Onmft/rfrf     HOT 
Approved for Public Release /  111 /11U 1 1     N X7 

Distribution Unlimited LUULUTII     \J\J\ 



abstraction is functionally equivalent to the ISA. This is accomplished via a technique 
introduced in this paper that we call incremental flushing, based on the Burch-Dill au- 
tomatic flushing approach and the self-consistency technique of Jones et al. [8]. In- 
cremental flushing reduces the verification complexity associated with flushing lengthy 
pipelines. This technique is also applicable to verification of other deeply-pipelined 
hardware designs, not just out-of-order microarchitectures. 

We have created a simple model of an out-of-order execution core that we use to il- 
lustrate our approach. Although our example is not representative of industrial-scale der 

signs, it captures essential features of out-of-order architectures: large queuing buffers, 
resource allocation within the buffers, and data-path scheduling of execution resources. 
However, using the techniques presented here, we were able to verify it using the Stan- 
ford Validity Checker (SVC) [1]. In particular, we have verified its correctness for any 
(reasonable) scheduling algorithm. 

2   Related Work 
Sawada and Hunt's theorem-proving approach uses a table of history variables, called a 
micro-architectural execution trace table (MAETT) [14,13]. The MAETT is an inter- 
mediate abstraction that contains selected parts of the implementation as well as extra 
history variables and variables holding abstracted values. It includes the ISA state and 
the ISA transition function. A predicate relating the implementation and MAETT is 
found by manual inspection and proven by induction to be an invariant on the execution 
of the implementation. In our approach, the intermediate abstraction does not include 
the ISA state, but is closer to the implementation in abstraction level. This minimizes the 
manual work needed to find the relation between the implementation and abstraction. 
We then use an incremental flushing technique to automatically generate the abstrac- 
tion function, significantly reducing the manual work required to relate the intermediate 
abstraction to the ISA. 

Damm and Pnueli generalize an ISA specification to a non-deterministic abstrac- 
tion [4]. It is then verified that the implementation satisfies the abstraction by manually 
establishing and proving the appropriate invariants. They have applied their technique to 
the Tomasulo algorithm [5], which has out-of-order instruction completion. In contrast, 
our out-of-order model features in-order retirement. In our approach, the intermediate 
abstraction executes instructions in-örder. Damm and Pnueli's abstraction represents all 
possible instruction sequences which observe dataflow dependencies. Applying their 
method to architectures with in-order retirement would require manual proof by in- 
duction that the intermediate abstraction satisfies the ISA. We automate this proof by 
incremental flushing. 

Henzinger et al. use Tomasulo'» algorithm to illustrate a method for manually de- 
composing the proof obligation [6]. They provide abstract modules for parts of the 
implementation. These modules correspond to implementation internal transactions. 
Similar to our approach, the abstractions are invariants on the implementation and are 
extended with auxiliary variables. Again, our approach automates part of the abstraction 
process. 

McMillan model checks the Tomasulo algorithm by manually decomposing the 
proof into smaller correctness proofs of the internal transactions that together form 



one step of execution [11]. Furthermore, he uses symmetry reduction technique to ex- 
tend the proof to a large number of execution units. Our proofs are also decomposed 
into properties of internal transactions. In contrast to an automated model checking ap- 
proach, our theorem-proving based method is able to handle internal buffers of arbitrary 
size. 

Incremental flushing is related to the distributed systems work of Katz [10]. His 
formalization deals with atomic, concurrent transactions which can be reordered into 
a more convenient form for formal analysis—without affecting the soundness of the. 
final result. However, the framework of distributed transactions cannot be directly apr 
plied to verification microprocessor architectures where the control logic dictates the 
sequencing of internal transactions. 

3   Preliminaries 
The desired behavior of a processor is defined by an instruction-set architecture (ISA). 
The ISA represents the programmer-level view of the machine where instructions ex- 
ecute sequentially. The ISA for our example is shown in Figure la. The simple state 
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Fig. 1. (a) The simple ISA model, (b) Instruction flow in our out-of-order execution core IMPL. 

consists of a register file (RF), while the next-state function is computed with an exe- 
cution unit (EU) that can execute any instruction. The ISA also accepts a bubble input 
that leaves the state unchanged. Note that our ISA model does not include a program 
counter or memory state—as these are also omitted from our simplified out-of-order 
model. 

Modern processors do not implement the ISA in this manner, because the perfor- 
mance would be abysmal. In out-of-order architectures, instructions are fetched, de- 
coded, and sent to the execution core in program order. Internally, however, the core 
executes instructions out-of-order, as allowed by data dependencies. This allows inde- 
pendent instructions to execute concurrently. Finally, instruction results are written back 
to architecturally-visible state (the register file) in the order they were issued. 

Consider our example out-of-order execution core (IMPL) shown in Figure lb. The 
architectural register file (RF) contains the current state of the ISA-defined architectural 



registers. When an instruction is issued, new entries are allocated in both the dispatch 
and retirement buffers, and the register translation table (RTT) entry for the logical 
register corresponding to the instruction destination is updated. The RTT is used to 
locate the instruction's source data. Instructions are dispatched, possibly out-of-order, 
from the dispatch buffer (DB) to individual execution units when their operands are 
ready and an execution unit is available. When an instruction finishes execution, the 
result is written back to the retirement buffer (RB). This data is also bypassed into the 
DB for instructions awaiting that particular result. Finally, the RB logic must ensure that 
instruction results are retired (committed to architectural state) in the original program 
order. When an RB entry is retired, the RTT is informed so that the logical register entry 
corresponding to the instruction's destination can be updated if necessary. IMPL also 
accepts a special bubble flushing input in place of an instruction. Intuitively, a bubble 
is similar to a NOP instruction but does not affect any state or consume any resources 
after being issued. 

We have made significant simplifying assumptions in our processor model: instruc- 
tions have only one source operand, and only one issue and one retire can occur each 
cycle. Our model is out-of-order because the execution units have variable latency. We 
also omit a "front-end" with fetch, decode, and branch prediction logic. Omitting these 
features allowed our efforts to focus on the features which make the out-of-order ver- 
ification problem difficult: the out-of-order execution and the large effective depth of 
the pipeline. The SVC verification reported in this paper used a model with unbounded 
buffers. 

4   The Approach 
The goal of our verification approach is to prove that the out-of-order implementation 
IMPL (as described by an HDL model) satisfies the ISA model. We define Si to be the 
implementation next-state function, which takes a state g, and an input instruction i and 
returns a new state q\, i.e., q\ = Si(qi,i). We extend Si in the obvious way to operate 
over input sequences w = io .. .in. We define Ss similarly for ISA. 

Let a be a size function that returns the number of currently executing instructions, 
i.e., those that have been issued but not retired. We require that cr(q°) = 0 for an 
initial implementation state q°. We define an instruction sequence w to be completed iff 
a(Si(q°,w)) = 0, i.e., all instructions have been retired after executing w. We use the 
projection function ■K9f(qi) to denote the register file contents in state qt. For clarity in 
presentation, we define qn = g« to be Tr^iqn) = fl^fe), and we will sometimes use 
= when the projection 7TRF is redundant on one side of the equality. 

The overall correctness property for IMPL with respect to ISA is expressed as: 
Correctness For every completed instruction sequence w and initial state q°, 

That is, the architecturally visible state in IMPL and ISA is identical after executing 
any instruction sequence that retires all outstanding instructions in the implementation. 
This is the same commuting property used by several approaches, including [3]. Note 
that because our model is only an execution core, we are only checking the correctness 



of the register file. A (future) verification of a more complete processor model could 
check the program counter and memory. 

We verify the correctness property by dealing with the out-of-order and in-order 
parts of IMPL separately. First, we derive an in-order intermediate abstraction (ABS) 
from IMPL. We then establish an equivalence relation between ABS and IMPL. In the 
second step, we demonstrate functional equivalence between ABS and ISA. By transi- 
tivity of equality of the final register file values, this establishes functional equivalences 
between IMPL and ISA. 

5   First Step: Functional Equivalence of IMPL and ABS 
ABS is derived directly from IMPL by removing the "out-of-orderness" while preserv- 
ing the in-order buffering mechanism (Figure 2). In ABS, the DB has been removed: 
instructions are executed immediately upon issue. However, the results are queued and 
not written to architectural state until later. In the ABS model for this paper, instructions 
are issued, executed, and written into an annotated RB in one clock. The write-only an- 
notated state in the RB contains some of the information lost with the DB removal and 
aids in finding invariants. ABS accepts the same bubble input as IMPL. We add an 
extra input to ABS called the retirement flag that signals when to retire the oldest in- 
struction. ABS thus has more possible behaviors than IMPL: while instruction results 
are computed immediately in ABS, they may be buffered indefinitely in the annotated 
RB before being committed to architectural state. 

Execution 
Unit 
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' ' 
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Retirement Buffer Register File RTT 

Instructions 1 J 

Fig. 2. Instruction flow in the intermediate abstraction. 

We must prove that IMPL is a refinement of ABS. We define Sa to be the ABS 
next-state function, which takes an initial state qa and a pair consisting of an input 
instruction i and a Boolean-valued retirement input r, and returns a new state q'a, i.e., 
q'a — 6a (qa, (i, r)). The retirement input r indicates in each step of execution whether or 
not to retire a result. A retirement input r is allowed by a state qa and input i iff r never 
tells ABS to retire an instruction when one is not waiting. Note that it is allowable for r 
to not retire a waiting instruction. We extend the definition of Sa to sequences of instruc- 
tion inputs w and retirement inputs wr = r0 ... rn such that q'a — Sa(qa, (w,wr))

1. 
We define states qi of IMPL and qa of ABS to be consistent when qi = qa- We must 

demonstrate that: 

The pair of sequences (w, wr) is easily derived from the corresponding sequence of pairs 
(to,ro),...,(*n,r„). 



Impl-ABS Refinement For every completed instruction sequence w and every pair of 
consistent initial states q°, g°, there exists a sequence of retirement inputs wr allowed 
by 9° and w such that 

Si{q°i,w) =öa(ql,(w,ivr))- 

We prove that IMPL is a refinement of ABS by induction: we show that for each 
step that IMPL makes, there exists an ABS step such that the register files are identical.. 
Forcing ABS to retire instructions in lock step with IMPL is straightforward. ABS re- 
tirement inputs are generated from an oracle which observes whether or not the IMPL 
is retiring an instruction and instructs ABS to do the same thing. We establish qi = qa 

by proving a stronger property. We derive a relation H between IMPL and ABS states 
such that: 1Z(qi,qa) =>■ fe — Qa)- We demonstrate that It is a simulation relation [9]: 

Proof Obligation 1 (IMPL-ABS Equivalence) 

1. (Base Case) For every initial implementation state q°, there exists an initial ABS 
state q°, such that: 

2. (Induction Step) For every instruction i, for every pair of consistent initial states 
Qi>Qa> and far every instruction sequence w and retirement sequence wr with re- 
sulting states qi = 6i(q°,w), qa = 5a(q°, (w,wr)), there exists a retirement input 
r such that 

K(qi,qa) => Tl{Si(qi,i),Sa(qa, (h
r)))- 

Deriving H is non-trivial. One way to construct 11 is to mechanically derive the weakest 
invariant which implies qi = qa. Of course, this technique blows up when applied 
directly to a complex circuit. 

The relation 1Z is formed as a conjunction of the IMPL reachability invariant, the 
ABS reachability invariant, and assertions relating the IMPL state with the ABS state. 
The difficulties associated with deriving invariants are ubiquitous. We used an ad hoc 
collection of domain-specific techniques we found to be quite effective. The process 
of deriving and proving the reachable-state invariant for IMPL was simplified by rec- 
ognizing that the out-of-order mechanism in a given cycle consists of a number of 
transactions—each of which operate on only part of IMPL state. In IMPL, these are 
issue, dispatch, writeback, and retire. The ABS reachability invariant is easily derived 
from the IMPL reachability invariant, because ABS is essentially a simple IMPL. Some 
IMPL state is not present in ABS, and other IMPL state has been renamed and is now 
part of the annotated RB. 

We added link assertions which relate partially executed instructions in the DB and 
RB of IMPL to their counterparts in the annotated RB of ABS. The link assertions 
ensure that the partially executed instructions in the implementation always have the 
correct value or the information needed (pointers or data) to eventually compute the 
correct value. Run times and memory usage for proving the proof obligations on our 
example are reported in Section 7. 
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Fig. 3. (a) A Max-n execution en- (b) An equivalent non-diagonal execution SA- (C) An equivalent 
Max-l execution ei. Labels in and rn denote the issue and retirement of instruction number n. 
The label rn||in denotes simultaneous issue and retire, r : n is a shorthand for n cycles where 
in each cycle, bubbles are issued and nothing is retired. The numbers indicate the sizes of each 
state. The squares indicate the distance between eh and £i. 

6   Second Step: Functional Equivalence of ABS and ISA 
In this section, we introduce incremental flushing, and use it to prove that ABS satisfies 
ISA. Formally, we desire to establish that: 
ABS-ISA Equivalence For every completed instruction sequence w, initial ABS state 
q°, and sequence of retirement inputs wr allowed by w and q°: 

f>a(ql, {u>,wr)) = 6s(irgf(ql),w). 

ABS contains an annotated RB that queues instruction results before they are com- 
mitted to architectural state. Recall that the Burch-Dill abstraction function flushes an 
implementation (by inserting bubbles) for the number of clock cycles necessary to 
completely expose the internal state. In the case of a simple five-stage pipeline, only 
five steps are required to complete the partially executed instructions. Following this 
approach with our model would compare a potentially full annotated RB with the ISA 
model. The Burch-Dill flushing technique would unroll ABS to the depth of the an- 
notated RB, resulting in a logical expression too large for the decision procedure to 
check. 

Our incremental flushing approach overcomes this unmanageable complexity. In- 
stead of flushing the entire pipeline directly, a set of smaller, inductive flushing steps 
is performed. Taken together, these proof obligations imply the monolithic flushing op- 
eration. To illustrate, consider the graphical presentation of three different executions 
of ABS in Figure 3. We define the execution of a system as the sequence of states that 
the system passes through when executing a given pair of input sequences (w,wr). For 
instance, the execution shown in Figure 3a is a result of executing the input sequence: 

(n,F),(i2,F), (bubble, F),(i3,F), (bubble, T),(t4,F>, 
(i5, T), (bubble, T), (bubble, F), (i6, T), (bubble, T), (bubble, T) 



Apart from self-loops, edges are only traversed when instructions are issued or retired. 
We use e(qa, (w,wr)) to denote the execution (sequence of states) resulting from 

the application of Sa to qa and (w,wr). We define last(e(qa, (w,wr))) as the last state 
of the execution. Note that by definition: 

last(e(qa,(w,wr))) = Sa{qa,(w,wr))). 

Each state in an execution is associated with the number of active instructions—defined 
earlier as the size function a. This is illustrated in Figure 3c. We call an execution where 
for all states a < n a Max-n execution (denoted en). Accordingly, completely serialized 
executions with at most one outstanding element are Max-1 executions (denoted £1). 

Our verification of ABS-ISA equivalence proceeds in two steps. First, we establish 
that: 
Incremental Flushing For every initial state q° andMax-n execution en(qa, (w,wr)), 
there exists (w1, w].) (derived from w,wr by reordering issues and retires) and a corre- 
sponding Max-1 execution E\(qa, (w

1, tu*)) such that: 

last{en{q°a,{w,wr))) = last{ei{q°a,{w1,wl
r))). 

A Max-1 execution is derived from a Max-n execution by reordering the issues and 
retires. This notion is based on the concept of self-consistency: execution results should 
be equivalent for certain classes of inputs [8]. The final results of Max-n and Max-1 
executions will be identical if we can prove inductively that reordering issue and retires 
for distinct instructions does not change the resulting state. Section 6.1 details the proof 
obligations for this step. 

The second ABS-ISA verification step shows that all Max-1 executions produce the 
same result as the ISA model. 
Max-1 ABS-ISA Equivalence For every initial state g°, and for every Max-1 execution 
E\ corresponding to an instruction sequence w1 and allowed retirement sequence w*: 

last(£l(q°a, (w
l,wl))) M 6s(irUq°),w). 

Proving this is much simpler than the original problem of directly proving ABS-ISA 
equivalence, since only one instruction is present in ABS at a time. The proof is carried 
out by induction on the length of instruction sequences, as described in Section 6.2. 

6.1    Incremental Flushing 

Space limitations prevent us from presenting the complete proofs justifying the incre- 
mental flushing approach. We will, however, state the verification steps and resulting 
proof obligations. We also include a proof sketch for the inductive step of incremental 
flushing. 

The incremental flushing proof step can be split up into three proof obligations, 
as illustrated in Figure 4a-c. Recall that Sa takes a state, an input, and a retirement 
input flag. We use T and F for the values of the retirement input flag, where T forces 
ABS to retire an instruction, and F prevents it from doing so. The first proof obligation 
demonstrates the independence of inserting and removing elements from the system: 
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Fig. 4. (a) Proof Obligation 2, the nodes are labeled with their sizes, (b) Proof Obligation 3. (c) 
Proof Obligation 4. (d) Proof Obligation 5, the ISA induction step. 

Proof Obligation 2 (Reordering Step) For every reachable state qas.t. a(qa) > 1, and 
for every input i: 

Sa(Sa(qa, (»,F», (bubble, T» = Sa{Sa(qa, (bubble, T», <t, F». 

In other words, we must show that the relative order of retirement and issue is immate- 
rial for distinct instructions. The next proof obligation requires that simultaneous issue 
and retirement of distinct instructions yields the same result as a sequential retirement 
and issue: 

Proof Obligation 3 (Parallel Correctness) For every reachable state qa s.t. a(qa) > 1, 
and for every input i: 

M<Za,(«,T)) =Sa{Sa(qa, (bubble, T»,(*,F)). 

The final proof obligation illustrates that bubble inputs without retirement do not 
change ABS state: 

Proof Obligation 4 (Correctness of Self-Loops) For every reachable state qa: 

Sa(qa, (bubble, F)) = qa. 

Taken together, these three proof obligations establish the Incremental Flushing step 
of our verification, i.e., that every Max-n execution has a functionally equivalent Max-1 
execution. We next give a brief sketch of the proof. 

Proof Sketch: We assume the three Proof Obligations shown above and must show 
that for every Max-n execution en there exists a corresponding Max-1 execution £\ 
such that 

last(en(ql,(w,wr))) = last(ei(q°, (lu1,^))). 

We perform the proof in two steps, as illustrated in Figure 3. Given an execution en 

(Figure 3a) we first show that we can construct a "non-diagonal" execution Sn (Fig- 
ure 3b) from en that does not have any diagonals nor self-loops, and such that 

last{en{q°a, (w,wr))) = last(eh(q°a, (w,wr))). 

This is proved by induction on the length of en. We use Proof Obligation 3 to replace 
any diagonal edge with horizontal and vertical edges. Proof Obligation 4 is used to 
remove the self-loops. 



The second step shows that we can derive a Max-1 sequence ei (Figure 3c) such 
that 

last(sn{q°a,(™,™r))) = last{Ei{q°, (w1, w].))). 

We prove this by induction on the distance between the non-diagonal Max-n execution 
En and the Max-1 execution £1, where distance is the number of "squares" that separate 
the two executions. For example, eight squares separate the executions in Figures 3b 
and 3c. We repeatedly apply Proof Obligation 2, "folding" the Max-n execution eft 

back to the corresponding Max-1 execution ei. This is possible because the input se- 
quences resulting in en and eÄ are completed (defined in Section 4). Each folding is' a 
reordering of independent retires and issues. 
End Proof Sketch. 

Note that each folding is a rewrite of the execution. It is easy to see that Proof 
Obligations 2-4 together are a confluent (Church-Rosser) set of rewrite rules, where 
the Max-1 execution is the unique normal form. 

6.2   Max-1 ABS-ISA Equivalence 

The final verification step is to show that all Max-1 executions of ABS are functionally 
equivalent with ISA. We can divide the Max-1 execution up into issue-retire fragments 
that are simple "steps" in the graphical illustration. The proof is a simple induction on 
the number of these fragments, comparing the execution and retirement of an arbitrary 
instruction from an arbitrary ABS Max-1 state with the result that is retired by ISA. 
This is illustrated in Figure 4d. Formally: 

Proof Obligation 5 (ABS-ISA Induction) For every initial IA state q° and every in- 
struction i: 

Sa(Sa(q°a, <t, F», (bubble, T» = (*.(*„(«£), *')• 

Because we have previously shown that a functionally equivalent Max-1 execution can 
be derived from an arbitrary Max-n execution, this step completes the proof of ABS- 
ISA equivalence. 

7   Results 
We have mechanically checked Proof Obligations 1 -5 for our models using the Stanford 
Validity Checker (SVC). The three models (IMPL, ABS, and ISA) and the proof obli- 
gations were written in a Lisp-like HDL. The proof formulas were constructed by sym- 
bolically simulating the models in Lisp. SVC was invoked through a foreign-function 
interface to decide the validity of the formulas. SVC's built-in support for linear arith- 
metic was used to model buffer pointers for the IMPL, RB, and ABS annotated RB. We 
also extended SVC with special read and write updates to support the writeback to the 
associative memory in the dispatch buffer. 

The total CPU run times and number of case splits required are enumerated in Fig- 
ure 5. The number of case splits is a rough indicator of the relative complexity of the 
simplified formula. 



IMPL-ABS 
Verification 

IMPL Reach. Inv. 
CPU       Case 
(sec)       Splits 

IMPL-ABS 
CPU   Case 
(sec)  Splits 

Base Case 1.9 10 0.7 4 
Issue 454.8 26,214 130.9 18,686 
Dispatch 49.1 12,036 163.3 45,828 
Writeback 35.0 842 42.1 4,426 
Retire 29.5 8,392 307.0 59,474 

ABS-ISA 
Verification 

CPU 
(sec) 

Case 
Splits 

ABS Inv. 222.2 48,440 
Obi. 2 37.6 530 
Obi. 3 26.2 2 
Obi. 4 7.0 2 
Obi. 5 17.8 14 

(a) (b) 

Fig. 5. (a) SVC run-times and number of case splits required for Proof Obligation 1, specified for 
each IMPL transaction, (b) SVC run-times and case splits for the verification of ABS. All runs 
performed on a 200-MHz Intel Pentium Pro system running Redhat Linux. 

8   Discussion 
Our work addresses two of the major problems in symbolic verification of out-of-order 
processor designs: the complexity of the out-of-order scheduling logic and the deep 
effective length of the pipeline. While our IMPL example is far simpler than an ac- 
tual out-of-order implementation, it is representative of the architectural features which 
make out-of-order verification difficult for existing techniques. 

There is still much work to be accomplished in addressing the complexity limita- 
tions encountered by formal methods on practical industrial designs. As these problems 
are solved, we expect that our approach will be directly applicable. We also anticipate 
that the incremental flushing approach will find use in a wide variety of verification 
problems involving very deep pipelines, such as digital-signal processing. 

We are currently formalizing the incremental flushing theory in the PVS theorem 
prover [12]. For each new design, PVS will automatically instantiate the proof obliga- 
tions and pass them to SVC for automatic verification. 
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